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We establish strict entropy production bounds for the Boltzmann equation with 
the hard-sphere collision kernel. Using these entropy production bounds, we 
prove results asserting that the rate at which strong L ~ convergence to 
equilibrium occurs is uniform in wide classes of initial data. This extends our 
previous results in this direction, which applied only to a very special collision 
kernel. Moreover, the present results provide computable lower bounds; 
compactness arguments are entirely avoided. The uniformity is an important 
ingredient in our study of scaling limits of solutions of the non-spatially 
homogeneous Boltzmann equation, and is the main focus of this paper. 
However, the results obtained here provide the only framework known to us in 
which one can obtain computable estimates on the time it takes a solution of 
the spatially homogeneous Boltzmann equation with initial data far from 
equilibrium to reach any given small strong L ~ neighborhood of equilibrium. 
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1. INTRODUCTION 

In  this pape r  we b o u n d  the ra te  of  a p p r o a c h  to equ i l i b r ium in the 

s t rong  L 1 sense by so lu t ions  to the spat ia l ly  h o m o g e n e o u s  B o l t z m a n n  

e q u a t i o n  with physical ly  real ist ic  col l is ion kernels.  O u r  ma in  tool  is a new 

quan t i t a t i ve  e n t r o p y  p r o d u c t i o n  inequal i ty .  U s i n g  it, we deve lop  a m e t h o d  

for c o m p u t i n g  a b o u n d  on  the t ime it t akes  a so lu t ion  which  s tar ts  

a rb i t ra r i ly  far f rom equ i l i b r i um to reach  any  given n e i g h b o r h o o d  of  equi-  
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librium. Once an appropriately small neighborhood of equilibrium is 
attained, methods based on the spectral theory of the linearized collision 
operator are applicable, and provide control over the rate of the final 
approach to equilibriumJ 4~ Our result enables us to estimate how long it 
takes a solution with initial data far from equilibrium to reach any desired 
neighborhood of equilibrium. In particular, we can control the way in which 
this time varies with the initial data. 

In a previous paper on the subject, we presented a qualitative version 
of these results for a special collision kernel, and discussed its application 
to the study of the relation between hydrodynamics and scaling limits of 
the Boltzmann equation. This paper builds on the results obtained in that 
paper. Familiarity with the first paper will surely facilitate the reading of 
this paper. We shall try, however, to make our exposition readable on its 
o w n .  

In the rest of-this introduction, we first describe our results. We then 
explain the methods by which we obtain them, and finally, we discuss the 
relations between our results and methods and those of others. 

We begin by introducing some notation and terminology. The 
spatially homogeneous Boltzmann equation, which, under certain 
conditions, ~15"1s'26~ describes the time evolution of the velocity distribution 
of a gas of molecules undergoing binary collisions, is 

d 
-~ f,(v) = .~(f,, f,)(v) (1.1) 

where 

.~(f, f ) ( v ) =  fs2 fR, [ f ( ~ ) f ( ~ ' ) - f ( v ) f ( v ' ) ]  b(v, v', co)a3v ' aco (1.2) 

The velocities ~ and f '  are related to the velocities v and v' and the unit 
vector co by 

~= v + ( co . ( v ' - v ) ) co  and ~ ' = v ' - ( c o . ( v ' - v ) ) c o  (1.3) 

Here, co is a unit vector, and throughout the paper, dco denotes the uniform 
probability measure on S 2. Finally, the microscopic rate function b(v, v', co) 
is the product of the relative speed Iv - v'l and the differential cross section 
for the elastic collision taking (o, v') into (~, ~'). For example, in the 
case of so-called hard-sphere collisions, the microscopic rate function is 
b(v, v',co)= I(v-v ')"col .  Our method applies to this case and others to be 
described below. 

Since f in (1.1) represents a density, we look for solutions of (1.1) in 
the space of nonnegative integrable functions. It is convenient to normalize 
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)' to be a probability density instead of a mass density; this normalization 
is conserved in time by solutions to (1.1). 

In addition to ~R3f,(v)d3v, there are two more physically significant 
functionals of f which are conserved under the time evolution described by 
(1.1), and one which is monotone. The two conserved functionals are the 
bulk velocity u(f) and the temperature O(f), which are defined by 

u(f)=IR3vft(v)dSv , O(f)=�89 (1.4) 

The monotone functional of f is the entropy H(f), which is defined by 

H(f) = - IR3 In f(v) f(v) d3v (1.5) 

This always well defined, admitting - o o  as a possible value, for velocity 
distributions with finite temperature. The Boltzmann H-theorem says that 
for solutions of (1.1), H(f,) is monotone increasing. 

Throughout this paper we shall consider solutions of (1.1) with initial 
data that has finite temperature and finite entropy. For all the collision ker- 
nels we consider here, global existence and uniqueness of such solutions for 
quite general initial data have been established, along with the fact that for 
such solutions, the mass, bulk velocity, and temperature are conserved, and 
the entropy is monotone increasing (see, e.g., refs. 1 and 29). That is, the 
conservation laws and the H-theorem, whose classical derivations are 
somewhat formal, do actually hold in our setting. 

The equilibrium solutions of (1.1) are the Maxwellian densities; i.e., 
those of the form 

M(v) = (2n0) -3/z e- Iv-  ulZ/20 

We shall denote by M y the Maxwellian density with the same bulk velocity 
u and temperature 0 as f.  

The entropy production at f is defined by 

- J'a3 In f(v) -~(f, f)(v), dSv (1.6) 

since at f ,  this equals (d/dt)H(f~) when f ,  is a solution of (1.1) and the 
integrand in (1.6) is integrable at f,. 

A more precise statement of the Boltzmann H-theorem is that 

- fR3 In f(v) .~(f, f)(v) d3v >i 0 (1.7) 
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with equality exactly when f = M y. While this does show that Maxwellian 
densities are the only equilibrium solutions to the Boltzmann equation, it 
does not by itself show that all solutions f ,  converge to the corresponding 
equilibrium M I~ and it certainly does not by itself give us information on 
the rate at which such convergence would occur. 

To see how the H-theorem might be strengthened to yield rate 
information, introduce the relative entropy D(f) of f ,  always with respect 
to M i, by 

D ( f )  = f~3 (--l~l--f) ln(--lt4-f) Mfd3v (1.8) 

Because In M I is quadratic, 

O( f ) = H( M -r) - n ( f  ) (1.9) 

It is clear from Jensen's inequality that D(f)>10, with equality exactly 
when f =  MY; this is known as Gibbs' lemma. More is true; when D(f) is 
close to zero, then f is close to M y. This stability result for Gibbs' lemma, 
which is precisely expressed by the Csizlar-Kullback inequality, "6) 

O(f)>~ �89 [I f-Mfl l  2 (1.10) L I ( ~  3 ) 

is one of the reasons we can use entropy production to control the strong 
L t(R3) convergence to equilibrium. 

Our main result is a quantitative entropic stability result for the 
H-theorem. Precise statements are made in Theorems 1.1 and 3.1 below, 
but what we shall establish is a bound of the form 

- fa3 In f(v) .~(f, f)(v) d3v >1 ~(O(f)) (1.11 ) 

where r • + --, •+ is a strictly increasing function that naturally depends 
on the microscopic rate function b, and that depends on f in a simple, 
explicitly computable way. We shall soon explain what this simple 
dependence is, but for now we note that what is important is that 4~ 
depends on f only through characteristics which are preserved by the time 
evolution. This means that given initial data fo, we can choose a single 
function �9 so that (1.11) holds for all f , .  Then since M I ' = M  !~ 

and we have 

d d 
dt H(f,) = - -dt D(f,) 

d 
D(f,) ~ - ~ (  D(f,) ) (1.12) 
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Since (b is computable in terms of f0, a standard comparison theorem 
for differential inequalities now gives us the desired quantitative rate 
information. 

The fact that r must depend on the initial data fo is made clear by a 
result of Bobylev, r who has shown that for Maxwellian molecules, there 
exist for each 2 > 0 physical initial data for which 

II f ,  - Mf~ t,m31 i> Ce- ~'' 

Roughly speaking, the characteristics of the initial data that determine 
measure how far "within" the class of finite-temperature, finite-entropy 

densities it is. 
The temperature part is easy. Let f be any finite-temperature density. 

For each R > 0, define 

I v -  u(f ) l  >~ R 

Evidently, ~r(R) decreases to zero as R increases. The rate at which this 
occurs is a measure of the concentration of the velocity distribution f .  Since 
~,s(R) can decrease arbitrarily slowly, a bound on its rate of decrease is a 
measure of how far "within" the class of finite-temperatue densities our 
data is. 

The entropy part requires an introductory discussion, since it is based 
on properties of the adjoint Ornstein-Uhlenbeck semigroup. This is the 
semigroup {~ :  2/> 0} of operators on L1(R ", d"v) whose action is defined 
by 

@q(Y) = fa, Mr1 _e-2al(y') e")q(e;'(y - y') ) d"y' (1.14) 

where M= denotes the Maxwellian with zero bulk velocity and temperature 
~. This can be expressed most clearly in probabilistic terms: if X is an 
R3-valued random variable with density f ,  and Z is an R3-valued random 
variable with the density M s independent of X, then ~ f  is the density 
of e-~X+(1-e-2~) l /2Z .  Evidently ~.  effects a sort of Maxwetlian 
regularization, and it is clear that 

. lim ~ f = f  and lim ~ ) . f = M  y 
2 ~ 0  ) . ~ o o  

for all densities f with zero bulk velocity and unit temperature. It is not 
difficult to show (ref. 12, Lemma 2.7) that H(~f)>1 H(f).  

822/74/3-4-19 
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For all finite-temperature, finite-entropy densities f ,  we define the 
positive function Xl on R+ by 

Zf(2) = H ( ~ . f )  - H ( f )  (1.15) 

We have shown that 2 ~ Xf(2) increases continuously from zero, and that, 
furthermore, for fixed 2 > 0 ,  f~--'Xf(2) is strictly convex and vanishes 
just when f =  M f (ref. 12, Lemma 3.5). We shall explain later how these 
statements are proved, and why the regularization provided by ~;. is a 
natural tool to use in investigating the Boltzmann equation, but for now 
we simply note that an upper bound on the rate at which Xf increases from 
zero is a measure of how far "within" the class of finite-entropy densities a 
given finite-temperature, finite-entropy density f lies. 

The function ~ in our main estimate depends on f only through the rate 
of  decrease of  ~lf and the rate of  increase of )~f. 

To obtain our lower bounds on the entropy production, we first 
consider the physically artificial Boltzmann equation arising when all 
kinematically allowed collisions are run at the same rate; i.e., in which the 
microscopic rate function b equals constant v. Because of its simplicity, and 
in particular the extra symmetries that it posseses, we are able to control 
solutions of this Boltzmann equation more closely than is directly possible 
with a physical collision law. 

It is worthwhile to obtain this control because entropy production 
estimates for the simple Boltzmann equation can be transfered to physical 
Boltzmann equations essentially on account of the simple fact that the 
entropy production is monotone in the microscopic rate function. Observe 
that while the hard-sphere rate function is not bounded below, it vanishes 
only when the relative velocity v -  v' is orthogonal to o~. As is evident in 
(1.3), these collisions have no effect. Thus, there will be only a small price 
to pay for modifying the hard-sphere rate function so that it is uniformly 
positive, and this small price can be safely absorbed into the entropy 
production inherited by monotonicity from the corresponding collision 
kernel with constant rate. 

The passage from the constant rate function to the hard-sphere rate 
function that we have just described is explained in full detail in Section 3. 
We show in fact that classical estimates of a type first considered by 
Carleman (9'~~ provide the means to carry out the monotonicity argument 
described above. Carleman's estimates, which we recall in Lemma 3.1, have 
been greatly generalized by recent authors, notably Elmroth (~) and 
Gustafsson. ~23) Their results could be used to prove a direct analog of 
Theorem 3.1, our theorem on the strong rate of convergence to equilibrium 
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for solutions to the hard-sphere Boltzmann equation, for all initial data fo 
satisfying 

fa lfo(v)lP d3v< oo and fa Ivl2p fo(v) dav< oo 
3 3 

for some p > 1. However, the analysis would be more involved and less 
explicit. For this reason, we instead work, following Carleman, with 
Lipschitz initial data possessing many moments. And even in the number 
of moments we have been extravagent when convenience could be bought. 
Still, the class of initial data with which we work is broad enough to 
include much that is of physical interest, and so we have sacrificed nothing 
essential in our efforts to keep things simple. 

With this much said about the hard-sphere case, we now turn to the 
matter that is the subject of Section 2: the entropy production estimates for 
Boltzmann equation with constant microscopic rate function b = v that are 
the basis of our monotonicity arguments. 

First, it is advantageous to rewrite this equation as follows: We 
introduce a bilinear operation f ,  gw-, fog on densities, called the Wild 
convolution (39) of f and g, by 

f og (v )=  fs 2 fa3f(v + ((v' - v) .09)09) g(v' - ( (v' - v) .o9)o9) dv' dr (1.16) 

The Boltzmann equation with constant rate function b =  v can then be 
written as 

0 
= f t ( v ) =  v[f t  ~  (1.17) 
O l  

[Note that we are using f ,  to denote f(t ,  .).] 
The use we make of the special symmetries of this equation stems from 

the fact that on account of those symmetries, its time evolution commutes 
with the action of the adjoint Ornstein-Uhlenbeck semigroup. Equivalently 
put, the Wild convolution commutes with the action of this semigroup 
(ref. 12, Lemma 2.8): 

~ ( f  ~  = ( ~ f ) ~  ( ~ f )  (1.18) 

This result is actually a simple variant of Morgenstern's result ~3~ that 

~a(f o f )  = (f#:,f)o ((#a f )  

and f#~ is an operator from the heat semigroup. 
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Next note that formally, for any solution f t  of (1.17), 

f t  + at = (1 -- v A t ) f t  + (v A t ) f t  oft + o( At) 

i.e., f t+a,  is a convex combination o f f ,  and f to f t .  Then, since the entropy 
functional is concave, we formally have 

H(f t  + a,) - H(f t )  >1 [ H(Lo ft)_ H(ft)]  + o(1 ) 
zlt 

(1.19) 

Indeed, using a Maxwellian regularization argument made available 
by (1.18), we have proved in our previous paper (ref. 12, Theorem 2.1) that 
for all velocity densities fo in Ll (R3 , ( l+lo l2)d3o)  with H ( f o ) > - o o ,  
t~--~ H(f t )  is continuous on I-0, oo) and differentiable on (0, or) with 

d 
H(f , )  >1 v[H(f t  of,) - H(ft)]  (1.20) 

We have also established there that (ref. 12, Lemma 2.2) 

H ( f  o f )  - H ( f )  >1 0 (1.21) 

and moreover the inequality is strict unless f - -  M y. 
Thus, (1.21) implies the Boltzmann H-theorem for the special 

Boltzmann equation (1.17), and our problem of obtaining lower bounds for 
the entropy production is reduced to that of obtaining lower bounds on 
n ( f o f )  - H ( f ) .  

If the Wild convolution o in (1.21) were replaced by the ordinary 
convolution ,,  (1.21) would become a special case of the Shannon-Stare 
inequality m) for the entropy of convolutions. It is fortunately the case that 
the Wild convolution has enough in common with the usual convolution 
that the analogy with the Shannon-Stam inequality can be made quite 
precise. In particular, we are able to adapt, and further develop, techniques 
introduced by Carlen and Softer in their proof ~'3) of a stability result for 
the Shannon-Stam inequality. 

The main reason that (1.18) is so important to us is that, as we shall 
explain below, it allows us to rewrite advantaneously the entropy difference 
H ( f o f ) -  H ( f )  in terms of a quantity called the Fisher information. 

The Fisher information I ( f )  is defined by 

l ( f )  : = 4 I n  ~ IV[f(v)3'/zl 2 d3v=IR ' IV In f(v)l 2 d3vf (v )  (1.22) 
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The relative Fisher information J ( f )  of f with respect to M y is defined by 

J ( f )  :=4 ~R ~ V(Mf----f)'/z 2 M/(v)  d3v 

= fR 3 IV In f ( v )  - V In MZ(v)l 2 f (v )  d3v (1.23) 

Easy computations reveal that 

J ( f  ) = I ( f  ) -- l( g /) (1.24) 

and that I ( M : ) =  3/O(f), and hence that 

I ( f )  = J ( f )  + 3/O(f) (1.25) 

The Fisher information functional is a convex functional closely related to 
the entropy functional. The analog of Gibb's lemma, for example, is the 
fact that I ( f )  >>. I (M: )  with equality exactly when f = MY; this fact is easily 
deduced from (1.24) and (1.23). Further background on the Fisher 
information functional and its relation to entropy functional can be found 
in ref. 13. 

The crucial connection between the entropy and the Fisher informa- 
tion is mediated by the adjoint Ornstein-Uhlenbeck semigroup. As 
demonstrated in ref. 13, Lemma 1.2, ),w-~ H(~a f )  is continuous on [0, ~ )  
and continuously differentiable on (0, ~ )  for all finite-temperature, 
finite-entropy distributions f .  Moreover, for such densities f we have 

d 
H(~. f )  = J ( ~  f )  (1.26) 

A consequence of this is that 

f: D ( f )  = J ( ~ f )  d2 (1.27) 

Then, since M : =  M f~ D ( f )  - D ( f o f )  = H ( f o f )  - H ( f )  and 
J ( f ) -  J ( f o f ) =  I ( f ) -  I ( f o f ) .  Therefore, using (1.18) and (1.26), we have 

f: H ( f o f ) - H ( f ) =  [ I ( ~ f ) - I ( ~ f o ~ a f ) ]  d2 

>i [ I ( ~ a f ) - I ( ~ f o ~ a f ) ]  d2 (1.28) 

for all O < a < b <  oo. 
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The problem of obtaining lower bounds on H ( f o f ) - H ( f )  is 
now reduced to the problem of obtaining a lower bound on 
[ I ( ~ . f ) - I ( ~ . f o ~ f ) ]  in terms of D(f) for values of 2 that are neither 
too large nor too small. Since the microscopic rate function is fixed, the 
bound is only allowed to depend on the rate of increase of Xy and on the 
rate of decrease of ~bf. 

We now explain our solution of this problem. We shall assume 
throughout our discussion that X: R+ ~ R+ is a fixed continuous increas- 
ing function with the property that X(0)=0, and that ~,:R+~--~It~+ 
is a fixed continuous decreasing function with the property that 
limR~ ~o ~O(R)= 0. Suppose also that f is a density with zero bulk velocity, 
unit temperature, and D(f)>1 ~ for some fixed e > 0, and suppose that 

Xs~<X and ~s~<~. 
The function Zr enters our analysis as follows: we base our selection of 

a and b in (1.28) on the rate of increase Of Zs. We show in Lemma 2.1 
that there is a number A(X, ~)>0,  explicitly computable in terms of the 
indicated arguments, so that 

J(~f)>>,D(f) whenever 2~<A(x, D(f)) (1.29) 

Since J(~.f)>1 D(f) throughout the region of integration on the right 
side of (1.28), our problem is now reduced to that of obtaining a lower 
bound on 

in f{I (g)- I (gog) lJ(g)>~e,g=~fand A(2, ~)/2~<2~<A(x,e)} (1.30) 

Since ~ has a number of evident regularizing properties, it is easier 
to estimate the infimum in (1.30) than it is to estimate directly 
H ( f o f ) - H ( f ) .  The regularizing properties that are crucial here are that 
~. is smoothing and that it produces pointwise Maxwellian lower bounds. In 
fact, we show in Lemma 2.2 that for all g of the form g = 4 .  go, where go 
is any density with u ( g o ) = 0  and 0(go)=  1, 

IV In g(v)l 2 ~< K~(2) p(v) (1.31) 

where p is a density with ~p comparable to $g, and 

g(v) >1 K2(2) M~I _ e-2av2(v) (1.32) 

where the constants are explicitly computed functions of 2 alone. Recall 
that M~ denotes the Maxwellian with zero bulk velocity and temperature ~. 

Maxwellian lower bounds, such as we have in (1.32), seem to be essen- 
tial in estimating the entropy production, and the fact that ~ produces 
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them automatically saves us from imposing any artificial assumptions 
about the existence of such bounds. 

In addition to the help provided by the regularization, we are helped 
by the fact that I(g) is quadratic in gin. Using all of this together, we show 
in Lemma 2.4 that the infimum in (1.30) is bounded below by 

K3(J.)inf{~R3lcv+d+Vlng(v)lZM,~_e-2~,/2(v)d3vlc~R,d~R3 } (1.33) 

where, again, K 3 is an explicitly computed function of 2. This is the most 
involved part of our argument. In an intermediate step, we need bounds on 
the eigenvalues of an operator closely related to the quadratic form on the 
right side of (1.33); these are worked out in Lemma 2.4. 

The right side of (1.33) bears a close resemblance to a multiple of J(g). 
We now make use, for the first time, of the fact that ~,:~< ~O to turn this 
resemblance into a bound. Because of (1.31) and our assumption on q%, 
we can choose an R large enough that at the minimizing c and d, 

I IVlng(v)+cv+dlZg(v)d~v<~J(g)/2 (1.34) 
~vl/> R 

For this value of R, consider 

II Icy + d + V  In g(v)l z M~l_e-2~)/2(v) d3v (1.35) 
vI >~ R 

which is obviously less than the quantity in (1.33). Call this value of R, 
which depends on qs and e := J(g), R(~,, 2, e). 

Now clearly, we can replace M,_e-:~)/z in (1.35) by g at the expense 
of a multiplicative constant depending on 2 and R(~O, 2, z), i.e., on 2, ~O, 
and e. What we are left with is a multiple of J(g) which exceeds D(f) for 
the values of 2 under consideration. This gives us our bound on 
n ( f o f )  - n ( f ) .  

Now simply keeping track of the explicit form of the constants in the 
cited lemmas, we prove: 

T h e o r e m  1.1 (Entropy production bounds for the constant rate 
collision kernel). Let f be a density wi thze ro  bulk velocity and unit 
temperature. Let X be a function that increases continuously from zero, 
and let ~b be a function that decreases monotonically to zero. Suppose that 

Zf~<X and Cf~<~, (1.36) 

Then, 

n( f  o f ) -  H(f) >1 ~z,,(O(f)) (1.37) 
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where 

and 

g~x.g,(e) := (A(x, e)e/4) Fr e)/2, e) 

Fq,(2, e) := [10-1e-4/(sa)] 2 e -R*c''a)2/~ ~ (1.38) 

R,(e, 2) := inf {R ] [2~b:(R/2) + CM~(R/2) + g,M,_:a,(R/2)] 

<~ ~ lO-3)t[lO-le -4/(5;')] (1.39) 

A(Z, e) := sup{2 I Z(2) ~< 8/2} (1.40) 

Remarks. The recipe for computing ~Px.r is somewhat complicated. 
While it clearly produces a strictly increasing function, this function in 
general increases very slowly. 

As described in our first paper, c~z~ our goal is to obtain bounds on the 
time it takes to reach a given small neighborhood of equilibrium that are 
independent of the initial data for all initial data within a given large class. 
This we obtain for the classes determined by X and ~k. For the applications 
described in ref. 12 it is the uniformity, as opposed to the times themselves, 
that matters. 

However, the fact that our results provide a framework within which 
bounds on the times of approach to equilibrium can be computed is not 
without physical interest. Indeed, by the spectral analysis in Arkeryd (4) and 
Wennberg, (38) one knows that after one reaches such a neighborhood, one 
has uniform exponential control on the final approach to equilibrium. 
However, published results give no clue as to how this first arrival time 
might vary with the initial condition; this time is always shown to be finite 
by a compactness argument. 

The problem is that the finite times provided by a compactness 
argument may well be so large as to have nothing to do with physical 
applications: consider Poincar6 recurrence times, for example. (We thank 
Ed Nelson for suggesting this example in this context.) 

Thus, it is natural to enquire whether or not our bounds lead to physi- 
cally realistic estimates on the time of approach to a sufficiently small 
neighborhood of equilibrium that the exponential convergence driven by 
the linearized Boltzmann equation must set in. The answer is that we 
obtain physically realistic times only under the assumption of substantial 
additional regularity of the initial data with presently available results on 
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the regularity of solutions of the Boltzmann equation. It may be possible 
to prove that such regularity as we need is quickly produced for quite 
general initial data, and we are studying the question. [A relevant example 
of this "automatic regularization" is given in (3.10) of Lemma 3.1.] Thus, 
it is worthwhile to discuss briefly the nature of this additional regularity. 

To get a feeling for the situation, let us consider a concrete example 
in which the various quantities in Theorem 1.1 can be worked out 
explicitly. 

Suppose that 

I(fo) < oo and C(fo) :=fa3 Ivll~176 oo (1.41) 

While these conditions are not terribly restrictive, they permit very explicit 
computations. 

As shown in ref. 12, Xg(2) ~< l (g)2 for all g, and X1,(2) is monotonically 
decreasing in t. Thus, XI,(2)~< X(2):= I(f0);t for all t and 2. 

One now easily works out from the definitions that 

A(Z, e) = min(e/(2I(fo)), 1/I0) 

R~(e, 2) ~< 10aC(fo) e2 -2[ 10- le - 4/(s~.)] - J 

The problem is that if we have, say, I(fo)= I02 and we want to bound 
the time it takes to drive D(f,) below, say, 10 -2, we have to work with 
A(X, e),~ 10 -4. Because of the factor [lO-~e -4/(s)')] in (1.39), this leads to 
alarming numbers. To arrive at physically realistic numbers, we must find 
a way to work with larger values of 2 or to eliminate the term 
[10-~e -4/r from our analysis, or both. 

These things can be done under additional hypotheses on the initial 
data fo that we now explain. Without additional hypotheses, however, we 
must content ourselves with the uniformity in the initial data. 

We first briefly explain how the term [10-1e 4/(sa)] enters our 
analysis and what can be done to avoid it. In all estimates of entropy 
production, e.g., those of Desvillettes c~71 and Wennberg, (38J pointwise 
Maxwellian lower bounds of the form 

f(v) >1 AMp(v) (1.42) 

for some A > 0 and some ~t > 0 play a crucial role. Unfortunately, there are 
no proven a priori bounds of this type for the Boltzmann equation 
(uniformly in time) even when they are assumed for the initial data. 
A crucial role of the Ornstein-Uhlenbeck semigroup in our analysis is 
that it produces such bounds, as we have explained regarding Eq. (1.32). 
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While (1.32) gives us the lower bounds we need, so that we need make no 
artificial assumption concerning (1.42), it is from the constant in (1.32) that 
the term [ 10- ~e-4/~5~)] enters. 

Under the additional hypothesis that 

f(v)>~A for Ivl ~< 1 (1.43) 

we can replace [10-~e -4/(5a)] by A2  -3/2 throughout our analysis. For- 
tunately, by slightly extending an argument of Carleman, (9) it is possble to 
establish (1.43) as an a priori bound at least in the case of hard spheres. If 
one, moreover, had a bound of the form (1.42), one could, as we shall see, 
eliminate the inverse power of 2 from the exponent in (1.38). One would 
then be able to obtain realistic times. 

Without such an estimate, one must find a way to work with larger 
values of 2. The problem is, as should be clear from the description of our 
method, that large values of 2 tend to almost entirely wash away D(~.  g) 
and J(~.  g). The simple Lemma 2.1 which we use to control this "washing 
away" seems to be an obvious place to look for room for improvement. 
This can be made, bu t - -aga in- -wi th  additional strong regularity assump- 
tions on the initial data. 

It is clear that if D(g)~0, then D(~. g) cannot vanish for any value 
of 2. Thus one expects that it should be possible to prove lower bounds on 
D(~.  g) even for 2 ~ 1, in terms of D(g), 2, bounds on the moments of g 
(or, what would be the same, bounds on ffg), and bounds on the 
derivatives of g. If one replaces the condition on l ( f )  in (1.41) by a condi- 
tion on, say, Sn3 I(-d)Sf(v)l d3v, one can easily derive a lower bound on 
D ( ~ f )  suitable for the derivation of realistic times. Such bounds are 
propagated uniformly in time by the constant-rate-function Boltzmann 
equation, but we do not know if this is the case for more physical collision 
kernels (though this seems likely). 

We shall not develop this part of the subject further in this paper 
because it is somewhat incidental to the main purpose of our investigation, 
and we just do not know what combination of improved pointwise lower 
bounds and higher-order smoothness estimates provide the best route to 
realistic estimates on the times of approach to equilibrium. We do intend 
for it to be clear that the results of this paper do provide a framework 
within which such bounds can be established. For this reason, we carefully 
track all constants throughout Section 2. In Section 3, our emphasis is dif- 
ferent. We wish to show that the methods introduced in ref. 12 and further 
developed here do apply to physically realistic collision kernels--such as 
that for hard spheres. Our aim in this section is to show how the size 
of which constants in which inequalities affect the rate of approach to 
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equilibrium in which quantitative way, but we shall not actually try to 
compute the rates themselves. 

We finally turn to the matter of related investigations, of which there 
are many. The use of Fisher information inequalities in proving entropy 
inequalities goes back to Stam. ~32~ Fisher information was used by 
Linnik t25~ in his proof of the central limit theorem by means of entropy 
production. McKean t28~ was the first to bring such ideas to bear on the 
Boltzmann equation in his study of the Kac model, a one-dimensional 
caricature of Maxwellian molecules. Later, Toscani ~33'341 developed some of 
these ideas for actual Maxwellian molecules. 

Another paper of Toscani t35~ is of particular interest here: He shows 
that for solutions of the Boltzmann equation for Maxwellian molecules, 
(d/dO I(f,)~<0: this controls Xy,. Since the rate function for Maxwellian 
molecules is bounded below, the bounds of Section 2 are directly applicable 
to Maxwellian molecules by monotonicity of the entropy production in the 
rate function. 

The method of getting lower bounds on the entropy production in 
terms of the relative entropy itself was introduced for the central limit 
theorem by Carlen and Softer. (t31 The method was developed further and 
extended to the Boltzmann equation by Carlen and Carvalho, t12~ but there 
only for rather special collision kernels, and only qualitatively. We show 
here, as promised there, that the methods apply for physically realistic 
collision kernels as well. 

Much more detailed discussion of the vast literature on entropy 
production can be found in our first papert12~; we have repeated only the 
essential points here. 

2. ENTROPY PRODUCTION ESTIMATES FOR THE 
B O L T Z M A N N  EQUATION WITH CONSTANT MICROSCOPIC 
RATE FUNCTION 

In this section, we prove the lemmas concerning the Boltzmann equa- 
tion with a constant microscopic rate function that were described in the 
introduction. Here, we state them in complete detail, and keep explicit 
track of all of the constants. 

We begin with a simple consequence of Gross'  logarithmic Sobolev 
inequality, t22~ 

Lemma 2.1 (Lower bound on J ( ~ . f )  in terms of D(f), Xl, 
and 2). Let f be any density with zero bulk velocity, unit temperature, 
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and finite entropy. For any function g increasing continuously from zero, 
define 

A(X, ~) := sup{2 I Z(k) ~< ~/2} (2.1) 

Then, whenever 2 ~< A(Zf, D(f)), 

J(t~.f) >1 D(f)  (2.2) 

Proof. By the definition (1.15) of Xy, D(~.f)>>. D(f)/2 for all 2 such 
that Xf(2)<~D(f)/2. Gross' logarithmic Sobolev inequality {22~ states that 
J(f)  >>. 2D(f).  (See ref. 11 for a statement in this form as well as several 
proofs.) It is thus clear from Gross' inequality that J(~f)>~2D(~af)>>. 
2(D(f)/2) for all 2 such that Xy(2)~<D(f)/2. | 

We next summarize the relevant regularizing properties of ~a. All of 
the statements in the following theorem are simple variants of known 
estimates for the heat semigroup. ~5~ 

L e m m a  2.2 (Regularity estimates on the range of ~a). Let f be any 
velocity density with zero bulk velocity and unit temperature. Suppose that 
0 < 2 ~< 1/10. Then the following hold: 

(i) Pointwise upper and lower bounds: 

10-le-5/(4))M(l _e-2A)/2(1)) ~ ~.f(v)  <<. (an) -3/2 2 -3/2 (2.3) 

(ii) Smoothness bounds: 

IV In ~ f ( v ) l  2 ~af(v) <<. 102-1 (M3~ " , f~)(v))" (2.4) 

where �9 denotes convolution, and f~l(v) denotes e3af(e~v). 

(iii) Concentration bounds: For all R > 1 

~O ~,a y( R ) <~ 50[ ~b y, a,( R/2 ) + ~bM,,_ _2a,(R/2)] (2.5) 

Proof. The condition 0<2...<1/10 is imposed for the sake of 
convenience (since anyway we will mainly be concerned with small values 
of 3.). In this range we have 

(8/5)2 ~< (1 - e-2~) ~< 22 (2.6) 

The upper bound in (2.3) is elementary. The lower bound is established as 
follows: Let g(v) be any density with zero bulk velocity and temperature no 
greater than one. Then for any ct > 0, making use of the fact that 

flvl<~x/~ g(v) d3v >~ 1/2 
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by Chebychev's inequality, 

fa3 M~(v - v') g(v ')  d3v'>~ ]1. I M~(v - v') g(v ')  d3v ' 
<~ w/'2 

/> (2)-5/2 e-Z/ ,M, /2(v)  (2.7) 

Choosing ~ = (1 - e  -2a) and g as in the definition (1.14) of ~ . f ,  we obtain 
the lower bound. 

The inequality (2.3) is proved by adapting a heat semigroup argument 
of Barron. ~5) This is easy to do, but because we need explicit constants, we 
carry out the estimate here. Let g = ~ f .  Then by (1.14) 

l 1 fR d 3t~' ]Vg(v)l = 1 - -e  -2~ 3 ( v ' -  v) M ( l _  e-a)(v--  v') e3;f(e:'(6)) 

<~ 1 - e-2~. ~ I v ' -  vl 2 M ( I _  ~-~)(v - v') e3:f(e~(O)) d3v ' 

x [ fR3M( l_e_~ l (v -v ' ) e3"~ f (e ; ' ( ( : ) )d3v ' ]  1/2 

But the last factor on the right is gin,  and we have 

IV In g(v)l z g(v)  <~ (1 -- e -  2:) - 2 f Iv'-- vl 2 M(I _e-2~)(V -- V') e3;f(e'~'((:) ) d3v ' 
aR3 

Now note that for any/~ > ~. 

w2M,(w) /Mt~(w)  = (fl/a)3/z w2e - (# -  ,),,.2/z,t3 <~ (fl/a)3/2 [2~/~/(fl - ~)] 

With ~ =  ( 1 -  e -2~) and f l= 32, we can simplify this expression using (2.6) 
and bound it above by 100/2 uniformly in w. We use this uniform bound 
to absorb the factor of ] v ' - v ]  z into M~l_e-2~)(v ' -v ) ,  and (2.4) is now 
established by elementary estimates. 

Finally, let V~ and V 2 be independent R3-valued random variables 
with zero means and variances no greater than 3 (i.e., temperatures 
no greater than unity). Suppose that they have densities gl and g2, 
respectively. Then V1 + V2 has the density gl * g2. Therefore, using E to 
denote the expectation, 

~,g~, g2(R) = E 1  {I v, + v21 ~> R} I V1 + VEI 2 

~< 2El {IV, I/> R/2)(I V~l = + IV212) + 2El {I 1:21 ~> R/2}(I V~l 2 + iv212) 

<~ 2~,g.(R/2) + (48/R 2) ~,g2(R/2) + 2~,g,(R/2) + (48/R 2) ~,g.(R/2) 
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This clearly establishes (2.13), and we record the bound 

r  g2(R) ~< 50l-q,g,(R/2) + q,,2(R/2)] 

for a l l R > l .  | 

(2.8) 

Remark. The unfortunate factor of e -5/(4;'J in the lower bound of 
(2.3) arises because the fact that O(f)= 1 only gives us a lower bound on 

fl f(v') d3v ' for R >  1 
v'l<~R 

This prevents us from replacing the ~ in (2.7) by a variable R to be 
optimally chosen depending on 2. If, however, we posses a priori lower 
bound of the form 

f(v) >>. A 

we can replace (2.7) by 

for Ivl ~< 1 (2.9) 

fR M=(v-v') g(v')d3v'>~ fl M=(v-v') g(v')d3v ' 
3 v'l<~R 

/> A (41t/3) R3e- R2/=M=/2(v ) (2.10) 

We then choose R2----Gt and c t = ( 1 - e  -2a) and obtain the following 
estimate: 

Let f and 2 satisfy the hypotheses of Lemma 2.2, and suppose in 
addition that (2.9) holds. Then 

~ f ( v )  >i A23/2M(j _e-~)/2(v) (2.11 ) 

We shall see in the next section that for hard-sphere collisions and 
uniformly continuous initial data, we have bounds of the form (2.9) 
uniformly in times tt> 1 for solutions of the Boltzmann equation with 
uniformly continuous initial data. In fact, by slightly extending a result of 
Carleman, (9) we have the a priori bound 

Iln f(v)l  ~<A'(1 + Ivl s) 

for all v in the setting described above. The constant A' depends only on 
the modulus of continuity of the initial data. The exponent 3 can be 
brought arbitrarily close to 2 at the expense of increasing A', but it cannot 
be brought all the way to 2 with available estimates. 



Entropy Production Estimates for Boltzmann Equations 761 

Thus, in the hard-sphere setting that we discuss in the next section, the 
estimates (2.9) and (2.11) will be available. For general initial data, 
however, (2.4) is the best estimate we have. 

We now prove the main estimate of this section. It is a descendant, 
considerably more involved, of a convolution estimate of Brown. tS~ 

L e m m a  2 .3  (Variational bound for the information dissipa- 
tion). Let f be a velocity density with zero bulk velocity and unit 
temperature. Suppose further that f = ~ g for some 0 < 2 ~< 10-1 and some 
other such density g. Then 

I(f) - I( f  of) 
>~I(f) - l  ,,].[ 10 -  l e -  4/(52)] 2 

• lav+b+Vlnf(v)12M._e-rw2(v)d3v a,b}] (2.12) 

where a and b range over R and R 3, respectively. Furthermore, 

I(f) <~ 102 - -1  (2.13) 

and the infimum in (2.12) is attained at some pair a, b with 

a 2 + Ibl 2 ~< [10-1e -4/tSar] I(f) (2.14) 

Remark. We have kept the term [lO-le -4/(5;')] separate and in 
square brackets since this terribly small term may be replaced by the much 
larger (for small 2) term [A23/2] under the condition (2.9) so that (2.11) 
holds. To make clear that this is so, we shall avoid simplifying constants 
containing the term [10-~e -4/t5~)] throughout the proof. We shall thus 
have that: Under the further condition (2.9), (2.12) and (2.14) hold with 
[ 10-1e-4/(52)] replaced by [.423/2]. 

The most involved part of the proof is an estimate on the spectrum of 
a quadratic form closely related to the integral on the right side of (2.12). 
We now state and prove this estimate as Lemma 2.4, and then return to the 
proof of Lemma 2.3. 

Let M,  denote the Maxwellian with zero  bulk velocity and tem- 
perature 0t, and let ~ denote the Hilbert space of nonconstant functions r 
with square-integrable distributional gradient equipped with the norm 

Il~fl ~,  = IR~ IV~(v)l 2 M~(v) d3v 
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in the usual way. For each o9 e S 2, let 

P~=og| and P~ = I - o 9 |  (2.15) 

be the corresponding orthogonal projections on R 3. Define the quadratic 
forms g~ and g~ by 

Then define 

and 

P~V~(g') M,(v') d3v ' 2 M,(v) d3v do9 

P~Vq~(O) M~(v') d3v ' z M,(v) d3v doJ 

g,(~b, ~b) = g~l(~b, qt) + g~(~b, ~) (2.16) 

Define positive operators C, and D, on L2(R 3, M,(v) d3v) by 

((~, C~)Z2r = g~,(~, ~b) (2.17) 

< q~, Du~ > L2(M,(v)dav)= fR 3 IV~(v)l 2 M,(v) d3v (2.18) 

It is easy to see that if ~b(v) is a polynolmial of degree m in the components 
of v, then so are C,~b and D,q~. As Grad c211 observed in connection with the 
linearized collision operator, this implies that the eigenfunctions of C, and 
D, are Hermite polynomials. Moreover, since both operators are rota- 
tionaUy invariant, the particular Hermite polynomials that arise as their 
eigenfunctions are exactly those that can be written as products of 
Laguerre polynomials in rv[ 2 and solid spherical harmonics. Thus, C, and 
D, can be diagonalized together. 

In fact, D, is a well-known operator--it is the quantum mechanical 
harmonic oscillator Hamiltonian (with restoring force depending on a) in 
the ground-state representation. Its spectrum is therefore well understood, 
and easy to work out. We need certain information concerning the relative 
sizes of corresponding eigenvalues of C, and D, in what follows. First, 
it is clear from Jensen's inequality and the identity M,(v )M, (v ' )=  
M,(O) M,(fi') that 

g,(~, ~b) ~< In3 IV~b(v)l z M,(v) d3v 

In other words, C, ~< D,. We shall need a somewhat stronger statement, 
which we give in the next lemma. 
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l -emma 2.4 (Eigenvalue estimates). 
spanned by 

Then 

/)1, /)2, 

Let ~ denote the subspace of 

v3, and 1vl2-3~ (2.19) 

C,~b = D,~b if and only if ~b e ~ (2.20) 

Furthermore, 

In n(t)-(tn) for all ~b ~ rig, -L (2.21) 

ProoL We first note that since scaling relates the spectrum of C~ to 
that of C# in the same way it relates the spectrum of D~ to that of D#, it 
suffices to prove the result for any fixed value of ~. For convenience, we 
choose ~ = 1/2, and write M for M m in the rest of the proof. We shall 
likewise drop the ~ subscript from all operators and quadratic forms during 
the proof. 

Let L~ denote the nth Laguerre polynomialof order y; i.e., 

~ L r , , ( Y )  tn=(1 - t ) - ( r+ l ) e -Y ' / ( I - t ) ,  Itl < 1 (2.22) 
n = O  

Let ~l.,,(v) denote the solid spherical harmonic of order/. By what we have 
said above, the eigenfunctions of both C and D are the functions ~b~.,,., 
where 

O~l.m..(V) := ~tl, m(V) t l .  + 1/2(Ivl2) (2.23) 

for l>>.O, -I<~M<~I,  and n>~0. 
These eigenfunctions are not normalized, but it is easy to see that the 

norm of r is independent of m. Using the identity 

= (H~ +1) f(n +3/2)) 
~o e-Yy~L~m(y) dy=6""\ r(n+ l)r(~+ l) / 

one easily obtains 

1 (r(r+_!)_r(.+_3/_z_!) (1.24) 
. . . .  ll~2(M,a(.)a3o)=2l 1 2 \ F (n+  1 ) F ( ? +  1) J CI, n 

Next, we observe that since C and D are rotationally invariant, their 
eigenvalues do not depend on m. Thus, we may define 2t,. and #1.. by 

C~Lm,  n : 21,n~l . . . .  and D~bl.m.. =/2/,. ~bl, m.. (2.25) 

822/74/3-4-20 
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What we are required to show is that 

2 t . .=# t . .  for l + n = l  and 2/.. ..< (13/15) /at,. for l+n>~2 

(2.26) 

Actually, it is much easier, and suffices for our  purposes, to work with 
only a part of C, and thus with only a part of 2t,,. Define 

and in the same manner  define C • It is easy to see that C, C" and C • are 
all diagonalized by the #t . . . .  basis, and evidently, if we denote the 
eigenvalues corresponding to C u and C ' ,  respectively, by 211t.. and ).~., then 

2 t .  = 211. + 2 • (2.27) �9 , t ,n 

The analysis that led to At.. ~</at.. clearly shows that 

2 u ~< (1/3)/.tt,,, and 2 • t.. t.. ~< (2/3) #l.,, 

Thus, to establish the inequality in (2.26), it suffices to show that 

),I!,, ~< (1/5)/~t,. for I+n>~2 (2.28) 

We now show that the inequality in (2.28) holds whenever l />2; this 
reduces the demonstrat ion of (2.26) to the computat ion of the eigenvalues 
21!" with l = 0  and 1= 1. 

Simple group-theoretic considerations expedite the computat ions now 
before us. Fix any t o e S  2, and some rotat ion R., taking the vector 
e 3 := (1, 0, 0) to ~. Introduce new coordinates wt, w2, and w3 by w = R ~ v .  
In these coordinates, ~o. V = O/aw 3. 

Note  that 

06t.o..(v) = 06t, o,.(R,o w) = @t.,,,(Rw) LI. + m(Iwl 2) 

I 

E (t) t +  I /2 2 )  = Ro,,.(og) q/t,,,,(w) L .  (Iwl (2.29) 
rn = --I 

where ~t~ Rj.k(~o ) is the (21+ 1 ) x ( 2 l +  l)  matrix representing R~. The first 
step in computing Cu(~t.o. . ,  ~t.o,.) is to perform the average 

1 f a r .,-o,'~+-'~1 dw, dw2 2 ~ ' l l ' O ' n l ' v ]  ~ (2.30) 
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of ~bt, o,,(v) in the plane perpendicular to 09. Writing (2.30) out using (2.29), 
it is clear that the only term in the sum that survives is the m = 0  term. 
Thus, the quantity in (2.30) is 

1 R  (ll I ~ fR 2 rc ~176 r (2.31) 

The second step is to differentiate this with respect to w 3, square the result, 
and integrate against (1/x//-~)exp(-w32). The third and final step is to 
average with respect to co. Since all of the co dependence is in the ~t~ Ro, o(r 
factor, and since Ss2 IRtol~o(r 2 d~o = 1/(21+ 1), we obtain 

Ft.,,(w3) 2 1 I f• d e .... 
#ll(q~/,o.., q%,o,.) 2 l +  1 x /~  dw3 (2.32) 

The by now familiar argument based on Jensen's inequality shows that 

~ fn ~---~3F,.,,(w3) 2e .... ] dw 3 

fo ~ M(v) d3w~ 3lVqJl.o.,,(w)12M(v)d3w (2.33) 

Combining (2.32) and (2.33), we have that 2~!,, ~< [1 / (2 /+  1)]/a~!,, and thus 
(2.28) is established in all cases in which 1/> 2. 

In order  to compute the 1 = 0 and the l = 1 series of eignevalues of C II, 
it is useful to introduce a generating function for the corresponding 
eigenfunctions. Fix any l and define the generating function gl(v, t) by 

gl(v, t)= ~ r t" (2.34) 
n=O 

By (2.22) we have 

gt(v, t) = ~,o(V)(1 -- t) -(1+ 3/2) e - 1"12 t/(l - t) 

Clearly 

~, ,, 211 t2n (gt( ", t), CIIgt(., t)>L21M~,,)d3v)= ~l,.'~t.,," 
rt=O 

(2.35) 

Since for each fixed t, g~(., t) is the product  of an explicit polynomial and 
an explicit Gaussian function, the inner product  on the left in (2.35) is 
readily computed and expanded as a power series. Equating coefficients 
then determines the 27,,. 
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To carry out the computation,  we introduce coordinates w~, w2, and 
w3 adapted to co as before. Then, as before, 

gl(v, t)=gl(Ro, w, t) 
I 

u} (2.36) = Rj.k(03 ) V~/.rn(W)(l - -  t ) - ( t+3 /2 )e - lVp2 , /~ l - , )  
rn= - /  

The first step in computing the left side of (2.35) is to perform the average 

1 f ,2 2 
-n in2 gt(v, t) e -("2+ ,3) dwl dw2 (2.37) 

of gl( ", t) in the plane perpendicular to co, ~ind, as before, the only term in 
the sum that survives is the m = 0 term. Thus, the quanti ty in (2.37) is 

1RC~176 2 gl(w' t) e-t'i+ @ dw~ dw2 := RCo~.)o(og) (2.38) 

The second step is to differentiate this with respect to w3, square the result, 
and integrate against (1/w/-~)exp( -wz)3 �9 The third and final step is to 
average with respect to co. As before, we obtain 

1 w~-~nfn d 2 " 2  (2.39) 81t(gl("t) 'gl("t))  21+----] ~-~w3G/(w3) e-'3dw3 

By direct computat ion,  one finds that 

(2n + 1)!~ gtl(go(., t), go( ", t ) ) =  2t2(1 - t2)-3/2 = ~ t 2" (2.40) 
. = o 2 " n  ! 

Comparison with (2.35) reveals that 

;t~., = 4n/(Zn + 1 ) (2.41) 

In the same way, one finds that 
(1 + 2fl)(1 - t2) -5/2, and thus, that 

$'ll(gl(. ,  t), g ,(- ,  t ) ) =  

)t~'., = (4n + 2)/(2n + 3) (2.42) 

Of course, through the relation of D to the quantum mechanical 
harmonic oscillator mentioned above, it is well known that 

#1,. = 21 + 4n (2.43) 
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This may also be directly established by the generating function method 
that we have just applied to the computation of 2t.n. 

Together, (2.41)-(2.43) establish the validity of (2.26) in the remaining 
cases. II 

Proof of Lernrna 2.3. We begin with certain square-integrability 
bounds that pave the way for the application of Lemma 2.4. First, 
integrating (2.4), we obtain 

I(f) = fa3 IV In f(v)l 2 f(v) d3v <. 102 - i  (2.44) 

For the rest of the proof we fix ~ :=(1-e-2~) /2 .  By (2.3), 
f(v)/M~(v) >/[ 10 - le-4/~s:')] pointwise, and thus 

f#  IV In f(v)l 2 M~(v) d3o <~ [lO-le -4/~5:')] -1 I(f) 

We now define ~(v):= lnf(v),  and rewrite the last estimate using (2.3) as 

f#  IV~(v)I 2 M~(v)d3v<~ [10-1e -4/(s;')] - l  102-1 (2.45) 

Some further notation must be introduced. This notation corresponds 
to that used in the proof of Lemma 3.2 of ref. 12, which is a qualitative 
version of the present Lemma 2.3. For each fixed co ~ S 2, define 

G,o(v, v')= fl/2(~) fl/2(Y) and g,o(o)=[ f# G,o(v, v')2 d3v'] 1/2 (2.46) 

We also define 

f ~ f =  fa' f(~) f(Y) d3v' 

Note that fo,of= g,o(v) 2, and hence, 

f ~ ~2f  ~176 d~ Js 2 g~ do9 (2.47) 

As in the proof of Lemma 3.2 of ref. 12, we define 

2-fR IlVg,oll - ~ IVgo,(v)l d3v 

Ilvoa,oll2= fR3 fR31VvG,o(v, v')12 d3v d3v' 
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and note that 

Then since 

we have 

4 IIVgJ]2=I( fo~f) ,  4 IlVvG,oll2=I(f) 

Carlen and Carvalho 

3 = I(M f) <~ I(fo. ,  f )  <~ I ( f )  < lO2-t 

(2.48) 

(2.49) 

3 IlVg,oll = 
l(f--) <~ IlVoa,oll ~ < l (2.50) 

We have shown in Lemma 3.3 of ref. 12 that 

IlVva~,ll 2 -  IlVg,oll 2 

r t 2 - 2  IIVg~'ll~z fn3fu3 IIV"G'~176 
llVoG,oll 2 ]tVgd[ z 

x Go(v, v') z dSv dSv ' (2.51) 

The left side of (2.51) is 1 /4[ I ( f ) - I ( f oo~ f ) ] .  To express more simply the 
right side, we define 

IlVvG~oll 2 
qJ,o(v)= iiVgwll2 lngo,(v) 

and note that on account of (2.48) and (2.49), V~h~, is square integrable. 
Also, note that 

V, In Go~(v, v') = ~  ~ ~ " ( P ~  Vr ~Vo In f (v )  + iV~ In f (v  ) = (P~ Vr + 

where the projections P,o and P• are those defined in (2.15). 
t o  

We can now rewrite (2.51) as 

I ( f )  - I ( f  o,o f )  

12 _ t e  _4/(5) . )_]2 >~/-~  [10 I,~ IR3 IV~bo,(p)- [-(P~ Vr (P~ Vql)(O')]l 2 

x M,(v) M,(v') d3v d3v ' (2.52) 

where we have used (2.3) to replace G,,,(v,v') z with [10-Ie-4/(sa)] z 
M,(v) M~,(v'). 
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We use Lemma 2.4 to estimate the cross term in this integral: First, 

I Io~ Io~ ~v~o~o~ t ~ :  v ~  § ~I, ~ ' ~ l  ~ ~ ~ , ~  ~,~o'~ ~ ~ '  

~R~ IV~(v)12 M~(u) d3v 

~ , 3 ~ 3 P  • d3v '2 + [( ~,Vr M~(v') M~(v)d3v (2.53) 

(We have first carried out the v' integration, and then used the arithmetic- 
geometric mean inequality to estimate the effect of the v integration.) Thus 
the integral in (2.53) is no less than 

fR' IV~b(v)12 M~(v) d3v 

- ~R3 fR~ P• M~(v') d3v' 2 [( ,o V~b)(fi)+ (P~V~b)(fi')] M~(v) d3v (2.54) 

Next since f~-* I(f) is convex, 

l(f) - l ( f  o f )  >1 fs' (I(f) - l ( f  o,o f )  ) do~ 

Thus, from (2.52) and (2.54), 

I(f) - I(f  of) 

>~ lO-12[ lO-'e-4/~'~']z [fR lVq~(v)j2 M~(v) d3v- ((~, C ~  )L2tM,,o,d~,] 

>>, I(f)-12[lO-le-4/m']21212 fR lV(r Hjc,r M~(v) d3v ] 

where H~- is the orthogonal onto o~ff~. Clearly, V(Hjc, C~(v))=ev+d for 
some c in R and some d in R 3. Since 

[dl + 3C2~ = fn 3 [V(//~r~(v))[ 2 M~(v) d3v 

~< IRs IVr 2 M~(v) d3v ~< [ l O -  ~e-'/~')'] l(f) 

by (2.44), we have the inequality (2.12) and the bounds (2.13) and 
(2.14). 1 
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Lemma 2.5 (Information dissipation bounded below in terms of 
relative information for regularized densities). Let f be a velocity density 
with zero bulk velocity and unit temperature. Suppose further that f = ~ .  g 
for some other such density g and some 2 with 0 < 2 ~< 1/10. Then, 

where 

and 

I( f)  - I ( f  o f )  >1 F,(2, J(f)) 

F~(2, ~)= [10-1e-4/(5:')] z e-R+(:.:.)z/a (e_____~_'] 
k.6 + 2eJ 

(2.55) 

(2.56) 

R~(e, 2) = inf{R 1 (2~%,~,(R/2) + qs M3~(R/2) + q,M,,_<_2~,(R/2)) 

~< (e/(3 + e)) 10-32110-1e-4/~5:~] } (2.57) 

ProoL By direct computation we have 

,~3lav+b+Vlnf(v)12f(v)d3v=3(a-1)2+lbl2+J(f)>~J(f)  (2.58) 

for all a and b. 
Next, note that for any R > 1, 

f [av+b+Vlnf(v)12f(v)d3v 
IvI >~ R 

<<.3a2 f Iv[Z f(v) d3v+ 3 IblZ f f(v)d3v 
[vl/> R Ivl/> R 

+3f, v, RlVInf(v)12f(v)d3v 
<~ 3(a2 + lbl2) ~bf(R)+ 3 0 2 - 1 f  M3:. , g('~)(v) d3v 

Ivl >/R 

~< 32 -1( [10-1e-4/~5~)] l ( f )  g,:(R) g,:(R) + 10~b M3a. g,a,(R)) 

~< 1502-1[ 10-~e --4](5).)] l(f)[2qsg,~.b(R/2) + ~b M,~(R/2) + tiM,, _._ v.,(R/2) ] 

(2.59) 

where we have used (2.4) of Lemma 2.2 in the second inequality, and the 
bound on a and [bl provided by (2.13). Then clearly 

J(f)  
f lay + b + V In f(v)l f(v) >>. 2 d3v 

Ivl ~< Ro(J{f),A) 2 

where R~(-, 2) is defined in (2.57). 
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Finally, 

fR~ av + b + V In f(v)[ 2 d3v M;,alz(V) 

t" 
>1 J lay + b + V In f(v)l 2 M;.,a/z(V) d 3 v  

Ivl ~< RO(J(f), ),) 

>~ e -  R'l'(J(f)')')2/~" ~lvl 
~< Rqt(J(f),2) 

>>- e -  Ro(J(f)'2)2/) J ( f  ) 
2 

lay + b + V In f(v)l 2 f ( v )  d3v 

since 

M ) ta/2/f > . M ;.,a/2( Rq,( J ( f  ), 2))/11 f II ~o 

on the region of integration, and we have the uniform bound (2.3) o n f .  
The result now follows from Lemma 2.4, the fact that I ( f )  = 3 + J ( f ) ,  

and (2.58). | 

Proof  of  Theorem 1.1. Suppose that D(f)>1 e. Then by Lemma 2.1, 
J ( ~ f )  >>. e for all 2 ~< A(X, e), and we have from the discussion in the intro- 
duction, the preceding lemma, and the obvious monotonicity properties of 
the function F)..~(e) defined there that 

H ( f o f )  - H ( f )  = [I(~.  f )  - I ( ~ . f o  ~ . f ) ]  d2 
.0 
I,A(z,e.) 

I-" JA(z,~/-, [ I ( ~  f )  -- I ( ~ . f o  ~ f ) ]  d2 

>/[A(z, eIe/4] r~,(A(z, el/2, ~) II 

T h e o r e m  2.6 (Bound on the strong L ~ rate of approach to equi- 
librium). Let fo be a velocity density with zero bulk velocity and unit 
temperature and finite entropy. Suppose further that for some function X 
increasing from zero, we have Xlo ~< X. Suppose also that for some p > 2 

~.Rs [oIP fo(V) dSv< oo (2.60) 

Then the solution of 

0 
~ f f(v)  = v[f f  off(v) - f , (v)]  (2.61) 
Ol 
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starting from fo satisfies 

II f ,  - M•~ ~,cR3~ ~ D(f,) <~ ~(t) (2 .62 )  

where ~(t)  is an explicitly computable function specified below which 
satisfies lim,~ o~ ~ ( t ) =  0, and which depends on fo only through D(fo), X, 
and SR3 Ivl" fo(v) d 3v. 

Proof. We have shown in ref. 12 that 

Xy, <<. Zro <~ X (2.63) 

Furthermore, by a result of Elmroth, (19) 

fR3lvJPf,(v)d3v<C(IR3[v['fo(v) d3v) 

uniformly in t, where C is a constant depending only on SR3 [vlPfo(v)d 3v 
as indicated. Therefore if we define ~ by 

~b(R)=C(~a3 ,vlP fo(v)d3v)/RP-Z 

it follows that 

~bj; ~< ~ (2.64) 

uniformly in t. Now define ~u(t) to be the solution of the ordinary differen- 
tial equation 

d 
dt ~ ( t ) =  -vCb~.z(q/(t)), with q / (0)=D(fo)  

By (2.62), (2.63), and Theorem 1.1, 

d 
D(ft)  ~< -vq~q,.z(D(ft)) 

The inequality (2.61) now follows from a standard comparison argument, 
and it is evident that q/(t) decreases to zero monotonically. II 

3. E N T R O P Y  P R O D U C T I O N  E S T I M A T E S  FOR T H E  
H A R D - S P H E R E  C O L L I S I O N  KERNEL 

As indicated in the introduction, we will use the fact that the entropy 
production is monotone in the rate function to apply the results of the pre- 
vious section to physical collision kernels. This entails the consideration of 
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several rate functions at the same time. We shall write .~(f, f;/~) to denote 
the collision kernel with rate function/~ when it is necessary to make this 
dependence explicit. 

In the rest of this section, b denotes the hard-sphere rate function 
defined in (1.4). Fix any v > 0, and define two more rate functions 

b~,.~(v,v,,co)={bv(V,V',co) for for 
b(v, v', co) >1 v 

(3.1) 
b(v, v', co) <-.. v 

and 

b,,,(v, v', co)= {~_b(v, v,, co) 

Notice that br b + b~), and hence, 

for b(v,v',co)>.v 
(3.2) 

for b(v, b', co) <~ v 

- ~n3 In f .~(f, f; b) d3v = - fR, In f .~(f, f ;  b'"') d3v 

- [ -  ~a ln f .-~(f,f;b,~,)d3v] 

Since b~'~>~ v, we have from Theorem 1.1 that 

- f, 

>t v~:.x/(D(f)) (3.3) 

The reason that this bound is useful to us is that we shall be able to 
show that with r defined by 

~bz(v) := - Ia~  ]In f . ~ ( f ,  f ;  b(v))] d3v (3.4) 

we have ~f(v)= o(v). Thus, for v small enough, ~r(V)<~ (1/2)v~, l .x l (D(f))  
and 

-- Iu3 In f .,~(f, f; b) a3v >1 (1/2) v~z.xe(D(f)) (3.5) 

Of course, to apply (3.5) to the study of solutions of the hard-sphere 
Boltzmann equation f , ,  we shall need bounds which allow us control the 
choice of v for f =  f ,  explicitly in terms of the initial data fo. It is easy to 
see why such bounds will hold for a wide class of initial data: Note that 
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Ilbt,.~llo~=v and that the support of b~,, I decreases to the empty set as v 
decreases to zero. Thus, any sort of estimate which asserts the uniform 
integrability of the functions 

In f~(v) [f,(~) f ,(6 ')  - f~(v) f~(v')] 

with respect to Lebesgue measure on R3• R 3 gives us control, uniform in 
t, on the rate at which qJi,(v) tends to zero with decreasing v. The first 
bounds of this type were obtained by Carleman, and his pioneering work 
has since been extended and complemented by many authors, as we shall 
shortly explain. 

Other bounds are needed to control Xi, and ~'i, for solutions of the 
hard-sphere Boltzmann equation uniformly, in t. While moment bounds 
may be used to control ~bi, exactly as in the last section, it is no longer the 
case that either Xi, or I(f ,)  is monotone decreasing in t, as they were in 
the constant-rate-function case. However, estimates on the modulus of 
continuity o f f , ( .  ) that are uniform in t, again a type of estimate considered 
by Carleman, can be used to deduce the control we require on Xz. 

We now collect these estimates on solutions of the hard-sphere 
Boltzmann equation in the following theorem. We call the inequalities 
stated there "Carleman estimates" because they are, as we have indicated, 
all of a type first considered by Carleman. c9'1~ After stating the theorem, 
we make a long series of remarks explaining how the theorem, as we have 
stated it, may be extracted from published literature. The result we present 
is only a convenient case of what is known. But our goal is to illustrate in 
the clearest manner possible how the results of the last section may be 
applied to the hard-sphere collision kernel. We do this by focusing on a 
special case--albeit  one that is sufficiently broad to be of real physical 
interest. After treating this special case, we explain how recent refinements 
of Carleman's pioneering work may be used to broaden greatly the 
applicability of our analysis. 

Nowhere in the published literature are explicit constants to be found, 
and neither shall we provide them here. While all of the constants are 
explicitly computable (without even too much book-keeping effort if one 
uses methods close to those originally employed by Carleman), our aim is 
to show how the size of  which constants affect the rate of  approach to 
equilibrium in which quantitative way. 

L e m m a  3.1 (Carleman estimates). Let fo be a density with zero 
bulk velocity and unit temperature satisfying the bounds 

fo(v) <<. C(I + Ivl2) - s  (3.6) 
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and 

Ifo(v)-fo(w)l<~BIv-wl for all v, w e R  3 (3.7) 

Then there exists a unique solution of the hard-sphere Boltzmann equation 
with initial data fo. Furthermore, there exist computable constants C and 
B, depending only on B and r so that 

and 

f ,(v) ~ C(1 + Iv12) -5 (3.8) 

If,(v)--f,(w)l<~BIv-wl for all v , w ~ R  3 (3.9) 

uniformly in t > 0. 
Finally, there exists a constant A depending only on B and ~ such 

that 

[In f,(v)l ~<A(1 + Ivl2) 3/2 (3.10) 

uniformly in t > 1. 

Remarks and References. The bounds (3.8) and (3.9) under these 
conditions are guaranteed by a special case of the theorem on p. 58 of 
Carleman's book. n~ To see that the constants are computable and how to 
compute them, one may consult the proof that is given only in the original 
paper, and there only in the special case that the density is a radial func- 
tion. However, as stated there, the methods apply without this assumption. 
A more general result is proved in full detail by Arkeryd. (3) 

The bound (3.10) calls for more extensive comment. Carleman proves 
a bound of this type in Theorem III of his paper (ref. 9, p. 119), but only on 
the time interval 0 < to ~< t ~< t~ < oo, and of course, only for radial densities. 
Again, the assumption that the density be radial is inconsequential (see 
ref. 26 for an explicit consideration of this point), but the finiteness of the 
time interval would be a problem. 

However, inspection of the proof reveals that apart from depending on 
to and t~, the constant A in Carleman's bound depends only on a lower 
bound on fo(v) in some neighborhood {v I Iv-vol <d} of some point %. 
Since 

~lvl <x/'2 ft(v) dsv ) 1/2 

for each t, there must be some Vo with ]Vo[ ~< x/~ such that f,(vo)/> 3/(4n). 
Then, since (3.9) holds, we have 

f,(v)~>10 - i  uniformly on { v [ [ v - v o [ < ( 1 0 B ) - ' }  
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Replacing fo by f ,_  l and taking to = 1 and tl = 2, we find that Carleman's 
argument now gives us 

I lnf ,(v)l<~A(l+lvl2) 3/~ for t < s < t + l  

where A is independent of t >  1. In this way, the bound (3.10) may be 
extracted from published proofs. 

I . emma 3.2 (Upper bound on entropy production for rate function 
bt,.~). Let f be a finite-entropy velocity distribution with zero bulk velocity 
and unit temperature. Suppose further that f satisfies the Carleman 
estimates (3.8)-(3.10). Then 

Is2 Ira3 J'a3 ]In f(v)l " ] f ( ~ , f ( ~ ' ) - f ( v , f ( v ' , l  btv,(v,v',co, d3vd3v']do9 

<- 102ACv28/25 (3.11 ) 

where A and C are the constants of (3.8) and (3.10). 

Proof. For each fixed co, define E(R, v) by 

E(R, v):= {(v, v ' ) l[ (v-v ' ) .o91 >~vand Ivl2+ Iv'12 < R 2 } 

Then 

In f (v)[f(~) f(~') - f (v)  f (v ' ) ]  b~v~(v, v', o9) d3v d3v ' 

(1 + 1012 + Iv']2) 3/= (1 + Ivl 2 + Iv'12) -5 d3v d3v ' 

+ 2AC IJ'l~'12+ I~'1:~> R2 (1 + [pl2+ Iv'12p/2 (1 + Iv12+ Iv'12) -5 d3v d3v ' 

(3.12) 

Icos 91 ~< v ~ or Iv -  v'[ ~< v (l -~) 

where 9 is the angle between co and v - v ' .  

The first integral in (3.12) is no greater than 2AC times the Lebesgue 
measure of E(R, v). The second integral in (3.12) is no greater than 
(8rt 2/3) R -  i. 

We now estimate the Lebesgue measure of E(R, v). We shall denote 
the Lebesgue measure of a measurable set E by IEI. First, fix 09 and v. 
If I(v-v')-~ol ~<v, then for any ~, either 
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Clearly 

I{v I [vl2~<R 2 and Icos 81 ~<v=}l <~7tR3v ~ 

and thus 

I{(v, v') I I021 + Iv'l 2 ~ R 2 and Icos 81 ~< v~}l ~< (4n2/3) R3v a 

Evidently, 

I{(v, v') I Iv[ 2 + [v'l 2 ~< R 2 and I v -  v'l ~< v r -~)}1 ~< (4M3) 2 R6v(I-=) 

Altogether, 

IR~ IR3 In f (v) [ f (~)  f ( ~ ' ) -  f ( v )  f ( v ' )  ] b.,)(v, v' co) d3v d3v ' 

<~ vAC((8~2/3)  R - l + (4n2/3) R3vct + (4n/3)2 R6v . - ~1) 

Now choosing R = v  -~/7 and ct=21/25, so that each of the three terms 
above contains the same power of v, and averaging over o9, we obtain the 
stated result. II 

We now use the Carleman estimates to control %f, uniformly in t. We 
shall make use of the fact that when f satisfies the bound (3.8), then fP  is 
integrable for all p>3/10.  (In fact, an easy argument using H61der's 
inequality shows that fP  is integrable for all p >  3/5 whenever f is a 
finite-temperature density. Thus, what we now do can be extended to a 
much more general setting, as we later explain.) 

We shall denote [Sa3fP(v)d3o]  l/p by Ilfllp for all p>O; the fact that 
II'llp is only a norm for p t> 1 shall be without consequence below. 

L e m m a  3.3 (Continuity estimate for the entropy). Let f and g be 
two velocity densities with zero bulk" velocity and unit temperature which 
satisfy the bound (3.8). Then 

I H ( f ) -  H(g)l ~< [ 1 0 ( C + e ) l n ( C + e )  + 103C 1/2] I l f -  gll~/9 (3.13) 

whenever I l f -g l l~  ~ 1, and where C is the constant in (3.8). 

ProoL We have 

I f l n  f -  g in  gl ~< I f  ~/2- g~/21" I f  ~/2 l n f l  

+ Igl/21 �9 I f  1/2 In f -  gl/,_ In gl (3.14) 
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We shall separately estimate the integrals of each of these terms over the 
following sets, defined for any fixed c > 0: 

t21 = {v If(v), g(v)/> c} 

I22 = {v I f(v)>~2c, c ~ g(v)} w {v 1 g(v) >~ 2c, c >~ f (v)  } 

123= {vl 2c>.f(v), g(v)} 

We shall bound the integral over/2,  using the fact that I f -  gl is small 
on I2, when I I f - g l l ,  is small. We shall bound the integral over ~22 using 
the fact that/22 is a small set when I I f - g l l ,  is small. We shall bound the 
integral over f23 using the fact that f and g are small on/21 when 11 f -  gill 
is small, together with the fact that Ilfl[,/2 and Ilfll,/2 are controlled 
by (3.8). 

First, note that II(f In In f)ll~o < 2  +In C. Also, on /2  l, I f  '/2 - gl/21 <~ 
�89 c-I/2 I f -  gl, and 

I f l n l n  f - -g  '/21n gl ~<(1 +c -u2) I f - g l  

Thus, 

Ia [I fl/2(v) - gln(v)l �9 I f ' n  ln f l + Ig'/2l �9 I f l /21n f (v)  - g ~/2 In g(v)l] d3v 
I 

~< [(1 +In  C/2) c- ' /2+CU21n C(1 + c- ' /2)]  I I f -  gill (3.15) 

Next, note that 

IIf-- gl] ,~ > I o  If(v)--g(v)l  d3v>~ fa c d 3 v : c  11221 
2 2 

Therefore, 

f [ I f ' /2 (v ) -g 'n (v ) l  . I f  1/2 l n f l  + Ig'/21 �9 I f  '/2 ln f ( v ) - g  1/2 In g(v)l ] d3v 
2 

~<4(Cln C) c - '  I I f -  gll, (3.16) 

Finally, note that on 123, for all c~< 1, g,/2 In g, f , n  lnf~< (1/~) c " - r )  
for any y > 0. Therefore, 

f o [ I f ' / 2 ( v ) - g ' / 2 ( v ) l .  I f  1/2 l n f l  + Igl/21. I f  '/2 l n f ( v ) - g  u2 In d3v g(v)l] 
3 

~< (1/~,) c~l/2- ~l( [I f I/2 ,/2 + 3 Ilgll *l~) (3.17) 
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By summing (3.15)-(3.17) and then choosing c=llf-gll~/3 and 
y = 1/6, we obtain the result. I 

L e m m a  3.4 (Bounds on X/ for densities satisfying Carleman 
estimates). Let f be a velocity density with zero bulk velocity and unit 
temperature. Suppose further that f satisfies the Carleman estimates (3.8) 
and (3.9). Then for all 2~< 10 -2, 

~f(v)<<.Kl(C)(1 + Iv12) -5 (3.18) 

where KI(C) depends computably on the constant C in (3.8). Moreover, 

Xf(2) ~ K2(B, C) 2 1/2~ (3.19) 

where K2(B, C) depends computably on the constants B and C of (3.8) 
and (3.9). 

Proof. We recall the notation gta)(v)=ea~g(e%). Then, using �9 to 
denote convolution, we may rewrite (1.14) as 

~ f =  ( M ,  _ e-2:.j ,an * f )~)  (3.20) 

Fix any e > 0 ,  any v, and any R <  Ivl. Then 

~R~ M,(w) f ( v -  w) d3w 

=fl,,', ~< R M~(w)f(v-w)d3W+fl,,,I ~> R M~(w)f(v-w)d3w 

<~C{[l+('vI-R)2]-s+f,,.l>~ M,(w) d3w } 

C{ [1 + ( I v l  - R)z1-5 + n-,/2[x + (2Ix)] e -x2 } 

where x 2 =R2/2o~. We choose R so that x 2 = 6  In(1 + Iv12). Then 

-1/2[x + (2/x)] e-X~ .N< 18n- i/2[ 1 + ( I v l  - R) 2 ] -5 

Next, we have R<~(12cO m Ivl. In our application, c~=e 2a-  1 ...<22eZa~ 
(l/50)e 1/5~ Thus, R~<(1/4) Iol, and hence [1 +( I01-R)2] -5~<  
20(1 + I012) -5. This establishes (3.18) for Ivl >12 -1/z. Since we clearly have 
~f(v)<<.C, for all v, (3.18) holds for Ivl<<.2 -~/2. As the first step in 
proving (3.19), note that by an elementary computation, H ( ~ f ) =  
H(M:~_ ~ �9 f ) -  32, we have that 

X:(2) ~< H(M,.~_ , �9 f )  - H(f) (3.21) 

822/74/3-4-21 
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By (3.19), we may apply Lemma3.3 provided we can control 
]]Mda-I *f--fllL~ta3v). To do this, we introduce the Ll(d3o) modulus of 
continuity 6:(. ): 

6f(r)=sup {fR3 I f (v  + w ) -  f (v  )] d3v l lwl <<. r} (3.22) 

Note that for Iwl ~< 1 and R~>2, 

fa~ l f (v  + w) - f ( v ) l  d3o ~< (4n/3) BR 3 Iwl + C(8n/7) 2~~ -7 

Choose R = 2 Iwl- ' /1~ and obtain 

6f(r) ~ ( 102B + 10C) r 7/1~ (3.23) 

Also, since f is a density, 6:(r) ~< 2 for all r. 
Then since 

IIM:~_, * f - f II L'.:o) 

~< (4n/3) R36f(R) + 2 f M~a_ l(w) d3w le 
w] ~ R 

+ (4rr/3) R3(102B + 10C) R7/1~ 6(e 2a-  1) R-2 

Choose R = 2(e z:'- 1 )1/3, and finally obtain 

IlMda- 1 * f - f  II L,r ~< K3(B, C)/~7/30 

The result (3.20) is now a consquence of Lemma 3.3. | 

As explained at the beginning of this section, the following theorem is 
a direct consequence of Theorem 1.1 and the lemmas proved here. 

T h e o r e m  3.4 (Entropy production bounds for the hard-sphere colli- 
sion kernel). Let f be a density with zero bulk velocity, unit temperature, 
and finite entropy satisfying the bounds (3.8)-(3.10). Then there is a strictly 
increasing function cbA.n.c: • ~ ---, R+ depending only on the constants A, 
B, and C in (3.8)-(3.10) such that 

- fR3 In f(v) .~(f, f)(v) d3v >t C A,B,c(D(f) ) (3.24) 

where .~ is the Boltzmann collision kernel for hard spheres. 
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Because  of  L e m m a  3.1, we n o w  ob ta in  an  a n a l o g  of  T h e o r e m  2.7 for 

the ha rd - sphe re  B o l t z m a n n  e q u a t i o n  for ini t ial  d a t a  sat isfying b o u n d s  of  

the type  (3.5) and  (3.6). 
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